login
A353806
a(n) = A353802(n) / gcd(A051027(n), A353802(n)), where A051027(n) = sigma(sigma(n)), and A353802(n) = Product_{p^e||n} sigma(sigma(p^e)).
10
1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 5, 16, 1, 1, 1, 1, 1, 1, 1, 112, 1, 1, 49, 13, 45, 1, 1, 1, 7, 16, 1, 5, 1, 1, 1, 16, 1, 1, 1, 1, 7, 64, 1, 1, 112, 1, 49, 16, 1, 7, 1, 1, 1, 1, 9, 784, 1, 1, 5, 720, 1, 1, 1, 1, 1, 1, 5, 7, 1, 1, 1, 16, 1, 5, 117, 1, 7, 16, 1, 16, 45, 1, 147, 16, 7
OFFSET
1,10
COMMENTS
Numerator of fraction A353802(n) / A051027(n).
FORMULA
a(n) = A353802(n) / A353804(n) = A353802(n) / gcd(A051027(n), A353802(n)).
PROG
(PARI)
A051027(n) = sigma(sigma(n));
A353806(n) = { my(f = factor(n), u=prod(k=1, #f~, A051027(f[k, 1]^f[k, 2]))); (u / gcd(A051027(n), u)); };
CROSSREFS
Cf. A000203, A051027, A353802, A353803, A353804, A353805 (denominators).
Cf. A336547 (positions of 1's), A336548 (positions of terms > 1), see also A353807.
Cf. also A353755, A353756.
Sequence in context: A050467 A008835 A040259 * A040260 A325938 A361132
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, May 08 2022
STATUS
approved