login
A353632
Even bisection of A353630: Arithmetic derivative of primorial base exp-function, reduced modulo 4, computed for even numbers.
4
0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1
OFFSET
0,3
FORMULA
a(n) = A353630(2*n) = A010873(A327860(2*n)).
A000035(a(n)) = A000035(n).
PROG
(PARI)
A353630(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); ((s*m)%4); };
A353632(n) = A353630(n+n);
CROSSREFS
Even bisection of A353630. A353631 gives the odd bisection.
Cf. also A353487, A353642.
Sequence in context: A356582 A320839 A094314 * A365713 A348328 A036864
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 01 2022
STATUS
approved