login
A353487
a(n) = A276086(2*n) mod 4, where A276086 is the primorial base exp-function.
8
1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3
OFFSET
0,2
FORMULA
a(n) = A353486(2*n) = A010873(A276086(2*n)).
a(n) = A353516(2*n + 1).
a(n) = A353517(1+n). [See comments in A353516 for a proof]
For n >= 1, a(n) = (A353517(n) * A353527(n)) mod 4.
PROG
(PARI)
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A353487(n) = (A276086(2*n)%4);
CROSSREFS
Even bisection of A353486. Odd bisection of A353516. Sequence A353517 shifted once left.
Sequence in context: A366520 A366519 A353517 * A356308 A228925 A230405
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Apr 24 2022
STATUS
approved