login
A353397
Replace prime(k) with prime(2^k) in the prime factorization of n.
11
1, 3, 7, 9, 19, 21, 53, 27, 49, 57, 131, 63, 311, 159, 133, 81, 719, 147, 1619, 171, 371, 393, 3671, 189, 361, 933, 343, 477, 8161, 399, 17863, 243, 917, 2157, 1007, 441, 38873, 4857, 2177, 513, 84017, 1113, 180503, 1179, 931, 11013, 386093, 567, 2809, 1083
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..397 (calculated using the b-file at A033844)
FORMULA
If n = prime(e_1)...prime(e_k), then a(n) = prime(2^(e_1))...prime(2^(e_k)).
Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2^k)) = 1.90812936178871496289... . - Amiram Eldar, Dec 09 2022
EXAMPLE
The terms together with their prime indices begin:
1: {}
3: {2}
7: {4}
9: {2,2}
19: {8}
21: {2,4}
53: {16}
27: {2,2,2}
49: {4,4}
57: {2,8}
131: {32}
63: {2,2,4}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Times@@Prime/@(2^primeMS[n]), {n, 100}]
PROG
(PARI) a(n) = my(f=factor(n)); for(k=1, #f~, f[k, 1] = prime(2^primepi(f[k, 1]))); factorback(f); \\ Michel Marcus, May 20 2022
(Python)
from math import prod
from sympy import prime, primepi, factorint
def A353397(n): return prod(prime(2**primepi(p))**e for p, e in factorint(n).items()) # Chai Wah Wu, May 20 2022
CROSSREFS
These are the positions of first appearances in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A033844 lists primes indexed by powers of 2.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A181819 gives prime shadow, firsts A181821, relatively prime A325131.
Equivalent sequence with prime(2*k) instead of prime(2^k): A297002.
Sequence in context: A110674 A003528 A032913 * A261072 A154508 A073573
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, May 17 2022
STATUS
approved