login
A353368
Dirichlet inverse of A103391, "even fractal sequence".
4
1, -2, -2, 1, -2, 4, -3, -1, 2, 2, -4, -3, -3, 4, 3, 0, -2, -10, -6, 1, 8, 4, -7, 3, 1, -2, -8, -1, -5, -4, -9, -1, 14, -10, 2, 17, -6, 4, 1, -1, -4, -22, -12, 1, -3, 4, -13, -1, 6, -14, -6, 11, -8, 28, 1, 1, 19, -10, -16, 3, -9, 4, -25, -1, 10, -42, -18, 25, 18, 0, -19, -17, -6, -14, -12, 5, 13, 12, -21, 3, 24
OFFSET
1,2
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A103391(n/d) * a(d).
a(n) = A353369(n) - A103391(n).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003602(n) = (n/2^valuation(n, 2)+1)/2; \\ From A003602
A103391(n) = if(1==n, 1, (1+A003602(n-1)));
v353368 = DirInverseCorrect(vector(up_to, n, A103391(n)));
A353368(n) = v353368[n];
CROSSREFS
Cf. also A349134, A353366.
Sequence in context: A336856 A193292 A275297 * A300667 A129687 A274742
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 18 2022
STATUS
approved