The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A353350 a(n) = 1 if A048675(n) is a multiple of 3, otherwise 0. 16
 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Proof for the formula a(n) = A353269(A332462(n)): This follows from a more general identity A048675(n) == A156552(A019565(A156552(n))) (mod 3). Applying A156552's inverse, the Doudna-map x -> A005940(1+x), to the both sides from the right we obtain A087808(n) == A048678(n) (mod 3), and from the respective recurrences of those two sequences it is easy to see that they are equal when reduced modulo 3. LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = A079978(A048675(n)). a(n) = A353269(A332462(n)). [See comments for a proof] a(n) = 1 iff A332813(n) = 0, or equally iff A332823(n) = 0. a(p) = 0 for all primes p. a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1. MATHEMATICA f[p_, e_] := e*2^(PrimePi[p] - 1); a[1] = 1; a[n_] := Boole @ Divisible[Plus @@ f @@@ FactorInteger[n], 3]; Array[a, 100] (* Amiram Eldar, Apr 15 2022 *) PROG (PARI) A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; A353350(n) = (0==(A048675(n)%3)); CROSSREFS Characteristic function of A332820. Cf. A003961, A048675, A079978, A332462, A332813, A332823, A348717, Cf. A353348 (Dirichlet inverse), A353349 (sum with it), A353352 (inverse Möbius transform), A353353. Cf. also A353269, A353380. Sequence in context: A173864 A353348 A359826 * A354097 A354927 A173861 Adjacent sequences: A353347 A353348 A353349 * A353351 A353352 A353353 KEYWORD nonn AUTHOR Antti Karttunen, Apr 15 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 00:02 EST 2023. Contains 359905 sequences. (Running on oeis4.)