login
a(n) = n / gcd(n, A332449(n)), where A332449(n) = A005940(1+(3*A156552(n))).
8

%I #8 Apr 11 2022 20:48:18

%S 1,1,1,2,1,3,1,4,3,5,1,6,1,7,5,8,1,9,1,2,7,11,1,4,5,13,9,2,1,15,1,16,

%T 11,17,7,18,1,19,13,4,1,7,1,2,15,23,1,8,7,25,17,2,1,9,11,4,19,29,1,30,

%U 1,31,3,32,13,33,1,2,23,35,1,12,1,37,25,2,11,39,1,8,27,41,1,42,17,43,29,4,1,45,13,2,31

%N a(n) = n / gcd(n, A332449(n)), where A332449(n) = A005940(1+(3*A156552(n))).

%H Antti Karttunen, <a href="/A353271/b353271.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = n / A353270(n) = n / gcd(n, A005940(1+(3*A156552(n)))).

%o (PARI)

%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };

%o A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };

%o A332449(n) = A005940(1+(3*A156552(n)));

%o A353271(n) = (n / gcd(n, A332449(n)));

%Y Cf. A005940, A156552, A332449, A353270.

%K nonn,less

%O 1,4

%A _Antti Karttunen_, Apr 09 2022