login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (3 * j + x).
5

%I #13 Apr 09 2022 08:49:24

%S 1,0,1,3,19,171,2044,30528,547390,11457237,274198402,7385438214,

%T 221099038597,7282925988615,261763288109884,10194190355448399,

%U 427609812103844122,19220373155515189149,921621193002227307943,46958377673245988620737

%N Expansion of Sum_{k>=0} x^k * Product_{j=0..k-1} (3 * j + x).

%F a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * |Stirling1(n-k,k)|.

%t a[n_] := Sum[3^(n-2*k) * Abs[StirlingS1[n - k, k]], {k, 0, Floor[n/2]}]; Array[a, 20, 0] (* _Amiram Eldar_, Apr 09 2022 *)

%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k*prod(j=0, k-1, 3*j+x)))

%o (PARI) a(n) = sum(k=0, n\2, 3^(n-2*k)*abs(stirling(n-k, k, 1)));

%Y Cf. A353255, A353257, A353258.

%Y Cf. A353262.

%K nonn

%O 0,4

%A _Seiichi Manyama_, Apr 08 2022