login
A353152
Perfect powers that are divisible by 5.
3
25, 100, 125, 225, 400, 625, 900, 1000, 1225, 1600, 2025, 2500, 3025, 3125, 3375, 3600, 4225, 4900, 5625, 6400, 7225, 8000, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27000, 27225, 28900, 30625
OFFSET
1,1
COMMENTS
a(n) == 0 (mod 25).
a(n) == {0, 25, 75} (mod 100).
LINKS
FORMULA
a(n) = (5*m)^k for some positive m and some k > 1. - David A. Corneth, Apr 28 2022
Sum_{n>=1} 1/a(n) = -Sum_{k>=2} mu(k)*zeta(k)/5^k = 0.0756933503... - Amiram Eldar, Jul 02 2022
EXAMPLE
225 is a term since 225 = 15^2 is a power of a multiple of 5.
MATHEMATICA
Select[Range[32000], And[GCD @@ FactorInteger[#][[All, 2]] > 1, Divisible[#, 5]] &] (* Michael De Vlieger, Apr 30 2022 *)
PROG
(PARI) isok(k) = ispower(k) && !(k%5); \\ Michel Marcus, Apr 27 2022
(PARI) upto(n) = { my(res = List()); forstep(i = 5, sqrtint(n), 5, c = i; for(e = 2, logint(n, i), c*=i; listput(res, c) ) ); Set(res) } \\ David A. Corneth, Apr 27 2022
CROSSREFS
Intersection of A001597 and A008587.
Cf. A075090 (even perfect powers).
Sequence in context: A158547 A144854 A237202 * A335717 A198385 A134422
KEYWORD
nonn,easy
AUTHOR
Marco Ripà, Apr 26 2022
STATUS
approved