login
A353021
a(n) = Sum_{l=1..n} Sum_{k=1..l} Sum_{j=1..k} Sum_{i=1..j} (l*k*j*i)^2.
2
0, 1, 341, 13013, 196053, 1733303, 10787231, 52253971, 209609235, 725520510, 2230238010, 6217887390, 15973440990, 38276304066, 86383520146, 185042663146, 378620563178, 743881306623, 1409531082531, 2585397711611, 4605062303611
OFFSET
0,3
COMMENTS
a(n) is the sum of all products of four squares of positive integers up to n, i.e., the sum of all products of four elements from the set of squares {1^2, ..., n^2}.
LINKS
Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums, Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199. See Theorem 4.8 for m = 4 and p = 2.
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200.
a(n) = binomial(2*n+8,9)*(5*n - 2)*(35*n^2 - 28*n + 9)/(5!*4).
PROG
(PARI) {a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(2*n + 1)*(2*n + 3)*(2*n + 5)*(2*n + 7)*(5*n - 2)*(35*n^2 - 28*n + 9)/5443200};
(Python)
def A353021(n): return n*(n*(n*(n*(n*(n*(n*(n*(8*n*(n*(70*n*(5*n + 84) + 40417) + 144720) + 2238855) + 2050020) + 207158) - 810600) - 58505) + 322740) + 7956) - 45360)//5443200 # Chai Wah Wu, May 14 2022
CROSSREFS
Cf. A354021 (for distinct squares).
Cf. A000290 (squares), A000330 (sum of squares), A060493 (for two squares), A351105 (for three squares).
Cf. A000915 (for power 1).
Sequence in context: A306310 A210454 A069309 * A086806 A300327 A289305
KEYWORD
nonn,easy
AUTHOR
Roudy El Haddad, Apr 17 2022
STATUS
approved