login
A352998
a(n) is the least k > 0 such that the binary expansions of A109812(n) and A109812(n + 2*k) have no common 1-bit.
2
1, 2, 1, 2, 2, 1, 3, 1, 2, 10, 2, 3, 1, 2, 1, 11, 2, 6, 2, 10, 4, 8, 3, 4, 2, 3, 1, 6, 1, 4, 8, 6, 13, 2, 12, 2, 5, 5, 18, 2, 9, 4, 2, 3, 7, 2, 3, 1, 2, 1, 12, 9, 6, 15, 2, 4, 9, 6, 2, 12, 8, 4, 7, 3, 6, 2, 5, 8, 4, 8, 2, 17, 4, 5, 4, 16, 2, 19, 3, 14, 5, 7
OFFSET
1,2
FORMULA
a(n) >= A352999(n).
EXAMPLE
For n = 18:
- we have:
k A109812(18+2*k) A109812(18) AND A109812(18+2*k)
- --------------- -------------------------------
0 33 33
1 11 1
2 19 1
3 21 1
4 13 1
5 15 1
6 22 0
- so a(18) = 6.
PROG
(C++) See Links section.
CROSSREFS
Cf. A109812, A352773 (positions of 1's), A352999.
Sequence in context: A105258 A329173 A366493 * A339351 A284322 A219607
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Apr 14 2022
STATUS
approved