login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.
1

%I #9 Apr 07 2022 10:43:14

%S 1,1,3,14,84,634,5740,60626,731852,9938670,149966116,2489148386,

%T 45070961740,884107377360,18676602726734,422721143355808,

%U 10205605681874952,261789688633794528,7110331886095458918,203848868169846041430,6151813078359073154568

%N Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.

%F a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n,k) * a(n-k).

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k!))))

%o (PARI) a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n, k)*a(n-k)));

%Y Cf. A000010, A159929, A300011, A318811.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 07 2022