

A352754


a(n) = pi(n) * Sum_{n <= q < 2n, q prime} q.


4



0, 5, 16, 24, 36, 54, 124, 96, 164, 240, 300, 360, 432, 354, 528, 714, 833, 714, 1112, 960, 1288, 1632, 1836, 2052, 2052, 2052, 2529, 2529, 2810, 3110, 4092, 3751, 3751, 4488, 4488, 5269, 6624, 6180, 6180, 7128, 7722, 8268, 8904, 8302, 9548, 9548, 10230, 9525, 10980, 10980
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sum of the primes q from the ordered pairs of prime numbers, (p,q), such that p <= n <= q < 2n.


LINKS

Table of n, a(n) for n=1..50.


FORMULA

a(n) = A000720(n) * A073837(n).  Bernard Schott, Apr 02 2022
a(n) = A352775(n)  A352753(n).


EXAMPLE

a(5) = 36; there are 6 ordered pairs of prime numbers, (p,q), such that p <= 5 <= q < 10: (2,5), (2,7), (3,5), (3,7), (5,5), and (5,7). The sum of the corresponding prime parts q gives 5+7+5+7+5+7 = 36.


MATHEMATICA

Table[PrimePi[n] Sum[(2 n  k) (PrimePi[2 n  k]  PrimePi[2 n  k  1]), {k, n}], {n, 100}]


CROSSREFS

Cf. A000720 (pi), A073837, A352749, A352753, A352775, A352777.
Sequence in context: A063243 A063232 A087747 * A090785 A069482 A274012
Adjacent sequences: A352751 A352752 A352753 * A352755 A352756 A352757


KEYWORD

nonn


AUTHOR

Wesley Ivan Hurt, Apr 01 2022


STATUS

approved



