login
A352743
a(n) = Product_{k=1..n} (p(k+1)+p(k))/(p(k+1)-p(k)), where p(k) = prime(k).
1
1, 5, 20, 120, 540, 6480, 48600, 874800, 9185400, 79606800, 2388204000, 27066312000, 527793084000, 22167309528000, 498764464380000, 8312741073000000, 155171166696000000, 9310270001760000000, 198619093370880000000, 6852358721295360000000, 493369827933265920000000
OFFSET
0,2
COMMENTS
Conjecture (T. Ordowski): a(n) is an integer for every natural n.
Checked up to n = 10^4. - Amiram Eldar, Mar 30 2022
Checked up to n = 10^6. - Michael S. Branicky, Apr 01 2022
Note that (a(n)-1)/(a(n)+1) is the relativistic sum of the velocities prime(k)/prime(k+1) from k = 1 to n, in units where the speed of light c = 1. - Thomas Ordowski, Apr 05 2022
FORMULA
a(n) = Product_{k=1..n} A001043(k)/A001223(k).
a(n+1) = 5 * Product_{k=1..n} A024675(k)/A028334(k+1).
Note that A024675(k) and A028334(k+1) are relatively prime.
EXAMPLE
a(4) = ((3+2)/(3-2))*((5+3)/(5-3))*((7+5)/(7-5))*((11+7)/(11-7)) = 540.
MAPLE
a:= proc(n) option remember; (p-> `if`(n=0, 1,
a(n-1)*(p(n+1)+p(n))/(p(n+1)-p(n))))(ithprime)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Apr 01 2022
MATHEMATICA
p = Prime[Range[21]]; FoldList[Times, 1, (Rest[p] + Most[p])/(Rest[p] - Most[p])] (* Amiram Eldar, Apr 01 2022 *)
PROG
(Python)
from sympy import nextprime
from itertools import islice
def agen(): # generator of terms
n, an, p, pp = 0, 1, 2, 3
while True:
yield an
q, r = divmod(an*(pp+p), pp-p)
assert r == 0, ("Counterexample", n, p, pp)
n, an, p, pp = n+1, q, pp, nextprime(pp)
print(list(islice(agen(), 21))) # Michael S. Branicky, Apr 01 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Apr 01 2022
EXTENSIONS
More terms from Amiram Eldar, Apr 01 2022
STATUS
approved