login
A352485
Decimal expansion of the probability that when a unit interval is broken at two points uniformly and independently chosen at random along its length the lengths of the resulting three intervals are the altitudes of a triangle.
2
2, 3, 2, 9, 8, 1, 4, 5, 8, 3, 1, 3, 6, 0, 9, 6, 9, 3, 3, 3, 4, 6, 3, 9, 7, 5, 9, 0, 8, 1, 4, 5, 3, 0, 2, 1, 0, 1, 8, 9, 6, 9, 6, 3, 8, 0, 9, 6, 6, 9, 5, 1, 7, 1, 4, 1, 6, 8, 1, 4, 6, 4, 9, 5, 8, 2, 1, 4, 6, 9, 1, 7, 1, 0, 6, 7, 1, 6, 7, 0, 7, 2, 6, 7, 5, 7, 6, 6, 3, 5, 2, 7, 3, 3, 2, 7, 8, 9, 2, 9, 7, 5, 1, 9, 3
OFFSET
0,1
LINKS
Eugen J. Ionascu, Problem 11663, The American Mathematical Monthly, Vol. 119, No. 8 (2012), pp. 699-706; alternative link; Are Random Breaks the Altitudes of a Triangle?, Solution to Problem 116633, by David Farnsworth and James Marento, ibid., Vol. 121, No. 8 (2014), pp. 741-743.
Eugen J. Ionaşcu and Gabriel Prăjitură, Things to do with a broken stick, International Journal of Geometry, Vol. 2, No. 2 (2013), pp. 5-30; arXiv preprint, arXiv:1009.0890 [math.HO], 2010-2013.
Roberto Tauraso, Problem 11663.
Eric Weisstein's World of Mathematics, Altitude.
FORMULA
Equals 12*sqrt(5)*log((3+sqrt(5))/2)/25 - 4/5.
Equals 24*sqrt(5)*log(phi)/25 - 4/5, where phi is the golden ratio (A001622).
EXAMPLE
0.23298145831360969333463975908145302101896963809669...
MATHEMATICA
RealDigits[24*Sqrt[5]*Log[GoldenRatio]/25 - 4/5, 10, 100][[1]]
CROSSREFS
Sequence in context: A364895 A299619 A215269 * A356092 A359427 A336246
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Mar 18 2022
STATUS
approved