login
A352355
a(n) is the least prime == prime(i-1) (mod prime(i)) for 2 <= i <= n.
1
2, 23, 173, 2273, 2273, 1473743, 25978223, 113275433, 10152454583, 10152454583, 27286379112263, 4509412212537503, 58057458593326463, 3420327120832524173, 178049025375964084613, 23055638276363375485073, 1049809665258712924748453, 110949022999023044736072443, 7819962464608765026553459733
OFFSET
2,1
COMMENTS
All the terms > 2 end with 3, because these primes p are == 3 (mod 5) and cannot end with 8. - Bernard Schott, Mar 25 2022
LINKS
EXAMPLE
a(3) = 23 because 23 is the least prime p with p == 2 (mod 3) and p == 3 (mod 5).
MAPLE
R:= NULL:
m:= 1: P:= [2]: p:= 2: t:= 1:
for n from 2 to 20 do
q:= p; p:= nextprime(p);
P:= [op(P), p];
t:= chrem([t, q], [m, p]);
m:= m*p;
for x from t by m do if isprime(x) then break fi od:
R:= R, x;
od:
R;
CROSSREFS
Cf. A030431.
Sequence in context: A220239 A189977 A130547 * A200846 A198851 A173341
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 12 2022
STATUS
approved