OFFSET
1,3
COMMENTS
The minimal choice of a(n-1) + 1 for the base of the digit values of a(n) results in the slowest growing sequence in general. Can its growth rate be determined without computing further terms?
a(8) has 500 digits and a(9) has 3496 digits. - Michael S. Branicky, May 22 2022
EXAMPLE
a(4) = 23 because in base a(3) + 1 = 3 + 1 = 4, the digit values 1, 1 and 3 represent 1*4^2 + 1*4^1 + 3*4^0 = 16 + 4 + 3 = 23.
PROG
(Python)
from itertools import count, islice
def agen(): # generator of terms
alst = [1]
for n in count(2):
yield alst[-1]
b = alst[-1] + 1
alst.append(sum(alst[-1-i]*b**i for i in range(len(alst))))
print(list(islice(agen(), 7))) # Michael S. Branicky, May 22 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Tamas Sandor Nagy, May 22 2022
STATUS
approved