login
A352275
a(0) = 1 and a(n) = Sum_{k = 0..2*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
2
1, 4, 64, 1429, 35072, 898129, 23571781, 628750217, 16965558016, 461752375705, 12652302369439, 348552604899778, 9644571491252069, 267852878928912034, 7462156684641697991, 208446714456132946429, 5836259481820028112640, 163741162073796817779389, 4602160147618819467316159
OFFSET
0,2
COMMENTS
The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005809(n) = binomial(3*n,n) = Sum_{k = 0..2*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005809(n) are known to satisfy the supercongruences A005809(n*p^r) == A005809(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39). Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 2. See A333093 (case m = 1) and A352276 case (m = 3).
FORMULA
a(n) ~ 5^(5*n + 3/2) / (19 * sqrt(Pi*n) * 2^(2*n + 1) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022
EXAMPLE
Examples of supercongruences:
a(3*5) - a(3) = 208446714456132946429 - 1429 = (2^3)*3*(5^4)*13*41* 26072134391011 == 0 (mod 5^4)
a(17) - a(1) = 163741162073796817779389 - 4 = 5*(17^3)*1506943* 4423278397003 == 0 (mod 17^3)
MAPLE
seq(add(n/(n + 2*k)*binomial(n + 2*k, k), k = 0..2*n), n = 1..25);
MATHEMATICA
nterms=25; Join[{1}, Table[Sum[n/(n+2k)Binomial[n+2k, k], {k, 0, 2n}], {n, nterms-1}]] (* Paolo Xausa, Apr 11 2022 *)
PROG
(PARI) a(n) = if (n==0, 1, sum(k=0, 2*n, binomial(n + 2*k, k)*n/(n+2*k))); \\ Michel Marcus, Mar 17 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 10 2022
STATUS
approved