ASYMPTOTICS FOR A352178

NOAM KIMMEL

Abstract
 We prove $\operatorname{A352178}(n)=\frac{n}{2} \log _{2}(n)+\mathcal{O}(n)$.
 1. LOWER BOUND

Let $T(n)=$ A352178 (n), the maximum over sets of size n of the number of pairs of elements from the set that sum to a power of two. For example, $T(3)=3$ which is achieved by the set $\mathcal{A}=\{-1,3,5\}$.

In order to prove a lower bound for $T(n)$ we look at $\mathcal{A}=\left(-\frac{n}{2}, \frac{n}{2}\right] \cap \mathbb{Z}$. The number of pairs from \mathcal{A} that sum to 1 is $n / 2$. The number of pairs from \mathcal{A} that sum to 2 is $n / 2-1$. In general, for $2^{k} \leq n$, the number of pairs from \mathcal{A} that sum to 2^{k} is $n / 2-2^{k-1}$. For k such that $2^{k}>n$ there are no pairs that sum to 2^{k}. It follows that the number of pairs from \mathcal{A} that sum to a power of two is
$\sum_{0<k \leq \log _{2}(n)}\left(\frac{n}{2}-2^{k-1}\right)=\frac{n}{2}\left\lfloor\log _{2}(n)\right\rfloor-\sum_{0<k \leq \log _{2}(n)} 2^{k-1}=\frac{n}{2} \log _{2}(n)+\mathcal{O}(n)$.
From the example above, one concludes that

$$
T(n) \geq \frac{n}{2} \log _{2}(n)+\mathcal{O}(n) .
$$

2. Upper bound

We show $T(n) \leq \frac{n}{2} \log _{2}(n)+n$ (which shows that our example for the lower bound is asymptotically optimal).

We first show the following useful lemma:
Lemma 2.1. Let $\mathcal{A} \subset \mathbb{Z}$ be some set of size n. The number of pairs of positive elements from \mathcal{A} that sum to a power of two is at most n.

Date: November 18, 2022.
noamkimmel@mail.tau.ac.il
The author would like to thank Uri Mendlovic for proposing the question, and for his helpful comments and corrections.

Proof. Denote \mathcal{A}^{+}the set of positive elements from \mathcal{A}. If \mathcal{A}^{+}is empty the statement is obviously true. Otherwise consider the largest element in \mathcal{A}^{+}. It can be a part of at most one pair from \mathcal{A}^{+}for which the sum is a power of two. And so, we can remove this largest element and proceed by induction.

This lemma shows that the number pairs of positive elements that sum to a power of two is going to be negligible. We now turn our attention to pairs that contain a positive and a negative element. We will call such a pair a mixed pair. A mixed pair that sums to a power of two will be called a good mixed pair.

We denote $T^{*}(n)$ the maximum, over all sets $\mathcal{A} \subset \mathbb{Z}$ of size n, of the number of good mixed pairs from \mathcal{A}. From our lemma, we see that $T(n) \leq$ $T^{*}(n)+n$. And so we just need to prove the following

Lemma 2.2. $T^{*}(n) \leq \frac{n}{2} \log _{2}(n)$.
Proof. We prove this by induction. The statement is obviously true for $n=1$ (since there are no pairs, so $\left.T^{*}(1)=0=\frac{1}{2} \log _{2}(1)\right)$.

Let $n \geq 2$ and assume that the statement is true for all $k<n$. Let $\mathcal{A} \subset \mathbb{Z}$ be some set of size n. If all elements of \mathcal{A} are even then we can divide them by 2 without changing the number of good mixed pairs. If all elements from \mathcal{A} are odd then we can add 1 to the positive elements, subtract 1 from the negative elements, and then divide all elements by 2 . Once more, this does not change the number of good mixed pairs. Repeating this process if necessary, we can assume that our set \mathcal{A} has both even and odd elements.

Denote \mathcal{A}_{e} the set of even elements from \mathcal{A}, and \mathcal{A}_{o} the set of odd elements from \mathcal{A}. Denote $\left|\mathcal{A}_{e}\right|=k,\left|\mathcal{A}_{o}\right|=n-k$, and we know that $0<k<n$ since \mathcal{A} has both even and odd elements. For every element from $a \in \mathcal{A}_{e}$, there is at most one $b \in \mathcal{A}_{o}$ such that (a, b) is a good mixed pair (namely $b=1-a$). The same is true for $b \in \mathcal{A}_{o}$. Such a b has at most one $a \in \mathcal{A}_{e}$ such that (a, b) is a good mixed pair. If follows that the number of good mixed pairs containing elements from both \mathcal{A}_{o} and \mathcal{A}_{e} is at most $\min (k, n-k)$.

The number of good mixed pairs with both elements from \mathcal{A}_{e} is bounded by $T^{*}(k)$. Similarly, the number of good mixed pairs with both elements from \mathcal{A}_{o} is bounded by $T^{*}(n-k)$.

Denote by G the number of good mixed pairs in \mathcal{A}. It follows that

$$
G \leq T^{*}(k)+T^{*}(n-k)+\min (k, n-k) .
$$

We now use the induction hypothesis (which is possible since $k, n-k$ are both strictly less than n). We get that

$$
G \leq \frac{k}{2} \log _{2}(k)+\frac{n-k}{2} \log _{2}(n-k)+\min (k, n-k)
$$

The last expression is maximized by $k=n / 2$. To see this, note that we can assume, without loss of generality, that $1 \leq k \leq n / 2$, and then we get the expression

$$
\frac{k}{2} \log _{2}(k)+\frac{n-k}{2} \log _{2}(n-k)+k
$$

Looking at this as a function of k, we see that it decreases for $1 \leq k \leq n / 5$ and then increases for $n / 5 \leq k \leq n / 2$. Thus, the maximum is attained in one of the end points $k=1$ or $k=n / 2$. Checking both, we find that $k=n / 2$ is the maximum. It follows that

$$
G \leq \frac{n / 2}{2} \log _{2}(n / 2)+\frac{n / 2}{2} \log _{2}(n / 2)+n / 2=\frac{n}{2} \log _{2}(n) .
$$

We have shown that any set $\mathcal{A} \subset \mathbb{Z}$ of size n has at most $\frac{n}{2} \log _{2}(n)$ good mixed pairs, which proves

$$
T^{*}(n) \leq \frac{n}{2} \log _{2}(n)
$$

as required.

