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This document is a response to the video entitled: Problems with Powers of Two - Numberphile

that appeared on Youtube on September 21st, 2022 (submitted by Numberphile).

Video id.: https://youtu.be/IPoh5C9CcI8

The author of this document intends to provide a sketch of a possible proof of the four numbers

case of the powers of two problem detailed at the beginning of the outlined video. The

author of this document believes that the ideas presented here can be used to formulate rigorous

mathematical proof for this particular case and are helpful for generalizations of the problem to

higher dimensions (number of integers).

1 Problem statement

Let Z denote the set of integers. We want to show that there exist z1 6= z2 6= z3 6= z4 ∈ Z and

si > 0, log2(si) ∈ Z (i = 1, . . . , 6) numbers so that



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1




z1

z2

z3

z4

 =



s1

s2

s3

s4

s5

s6


, or Az = s (in short). (1)

2 Sketch of the proof

Let us assume that there exists a solution to the outlined problem. In our scenario, the necessary

condition for the existence of a solution is: s ∈ Im(A) where Im(A) denotes the range space

1



(column space) of matrix A. In other words, vector s must be in the linear subspace spanned

by the column vectors of A. An equivalent statement: vector s must be perpendicular to the

orthogonal complement of Im(A) defined by the nullspace of AT denoted by Ker(AT ). It is easy

to verify that Ker(AT ) = Im(N) where (for example)

N =



1 0

0 1

−1 −1

−1 −1

0 1

1 0


(2)

since ATN = 0. (It is also easy to verify that Im([A N]) = R6). Consequently,

s ∈ Im(A) ⇒ NT s = 0 →
s1 − s3 − s4 + s6 = 0

s2 − s3 − s4 + s5 = 0
⇒

s1 + s6 = s3 + s4

s2 + s5 = s3 + s4
(3)

Using binary representation for si (e.g., s1 = 8 = 〈. . . 001000.000 . . . 〉2 or in case we allow negative

powers 0.125 = 〈. . . 0000.00100 . . . 〉2 ) it is easy to see that: given equality (3), s1, . . . , s6 can not

be distinct since any binary sequence including exactly two 1-bits (sum of distinct integer powers

of two) can be uniquely decomposed to a sum of two binary sequences, each including exactly one

1-bit (integer powers of two). Furthermore, given that si > 0, the possible solutions to (3) are:

1st equation:

{
s1 = s3 ⇒ s4 = s6

s1 = s4 ⇒ s3 = s6
2nd equation:

{
s2 = s3 ⇒ s4 = s5

s2 = s4 ⇒ s3 = s5

giving us five possible ways to construct vector s:



s1

s2

s3

s4

s5

s6


=



x x x x x

x x y y x

x x x y y

x y y x x

x y x x y

x y y y y


(4)

where x, y > 0 and log2(x) ∈ Z, log2(y) ∈ Z (x, y are integer powers of 2). Now, taking the first

four rows of A and s and performing Gaussian elimination, we get the following equality:
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
1 1 0 0

0 −1 1 0

0 −1 0 1

0 0 2 0




z1

z2

z3

z4

 =


s1

s2 − s1

s3 − s1

s4 + s2 − s1


with solutions in the following form:


z1

z2

z3

z4

 =


s1 − z2

z3 + s1 − s2

z3

z2 + s3 − s1

 =


−z3 + s2

z3 + s1 − s2

z3

z3 + s3 − s2

 . (5)

Putting (5) together with (4) we get the following table:
z1

z2

z3

z4

 =


−z3 + x −z3 + x −z3 + y −z3 + y −z3 + x

z3 z3 z3 + x− y z3 + x− y z3

z3 z3 z3 z3 z3

z3 z3 z3 + x− y z3 z3 + y − x

 .

As can be seen, each possible result has repetitive values implying that there exist no z1 6= z2 6=
z3 6= z4 ∈ Z and si > 0, log2(si) ∈ Z (i = 1, . . . , 6) subject to (1).
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