Pairwise Powers of 2 Problem

Alex Bradley

September 22, 2022

1 Abstract

A set $S \subseteq \mathbb{Z}$ is a solution to the Pairwise Powers of 2 problem if and only if every pair of distinct elements of S sum to a power of 2 . That is,

$$
\begin{equation*}
\forall x, y \in S . \exists n \in \mathbb{Z}_{+} .\left(x \neq y \Longrightarrow x+y=2^{n}\right) \tag{1}
\end{equation*}
$$

It is known that solutions of size 2 and 3 exist, for example $\{3,5\}$ and $\{-1,3,5\}$. In this paper I will prove that no solutions exists of size 4 (or greater).

2 No Solutions of Size 4

Observation 1. Any subset of a solution is also a solution.
For example, the solution of size 3 listed about is $\{-1,3,5\}$. Notice that $\{-1,3\},\{-1,5\}$, and $\{3,5\}$ are all solutions of size 2 .

Lemma 1. Any solution of size 3 must contain a negative integer.
Proof. Suppose by way of contradiction that $\{a, b, c\}$ is a solution of positive integers. Assume without loss of generality that $a<b<c$. Note that $a+b<a+c<c+b$ and $b+c<2 c<2(a+c)$.

By definition, $a+c$ and $c+b$ are powers of 2, but note that $a+c$ and $2(a+c)$ consecutive powers of 2 , thus $c+b$ cannot exist between them. We have reached a contradiction, so our assumption that an all-positive solution of size 3 exists must be false.

Theorem 1. There are no solutions of size 4.
Proof. Suppose by way of contradiction that a solution $S=\{a, b, c, d\}$ exists. Then by Observation $1,\{a, b, c\}$ is a solution of size 3. By Lemma 1 , one of a, b, or c must be negative. Let $a<0$ without loss of generality.

Now note that again by Observation $1,\{b, c, d\}$ is also a solution of size 3, and contains a negative value by Lemma 1 . Let this negative value be $x \in\{b, c, d\}$.

Now we have $a, x \in S$ with $a, x<0$ and $a \neq x$. Clearly $a+x<0$ is not a power of 2 , which means S is not a solution of size 4 .

Corollary 1. There are not solutions of size greater than 4.
Proof. By Observation 1, any solution of size greater than 4 would contain a solution of size 4, which has already been shown to not exist.

