The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A352134 Numbers k such that the centered cube number k^3 + (k+1)^3 is equal to at least one other sum of two cubes. 18
 3, 4, 9, 18, 32, 36, 46, 58, 107, 108, 121, 123, 163, 197, 235, 301, 393, 411, 438, 481, 490, 528, 562, 607, 633, 640, 804, 1090, 1111, 1128, 1293, 1374, 1436, 1517, 1524, 1538, 1543, 1698, 2018, 2047, 2361, 3032, 3152, 3280, 3321, 4131, 4995, 5092, 5659, 5687, 5700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The centered cube number a(n)^3 + (a(n) + 1)^3 is equal to at least one other sum of two cubes: a(n)^3 + (a(n) + 1)^3 = b(n)^3 + c(n)^3 = d(n), with b(n) > a(n) and b(n) > |c(n)|, and where b(n)=A352135(n), c(n)=A352136(n) and d(n)=A352133(n). A number k is a term iff t = k^3 + (k+1)^3 = (2*k + 1)*(k^2 + k + 1) has one or more divisors s < 2*k such that 12*t/s - 3*s^2 is a square. Each such divisor s is the sum of two integers (other than k and k+1) whose cubes sum to t. - Jon E. Schoenfield, Mar 09 2022 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..917 (terms 1..275 from Vladimir Pletser) A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998. Eric Weisstein's World of Mathematics, Centered Cube Number FORMULA a(n)^3 + (a(n) + 1)^3 = A352135(n)^3 + A352136(n)^3 = A352133(n). EXAMPLE 3 belongs to the sequence as 3^3 + 4^3 = 6^3 + (-5)^3 = 91. From Jon E. Schoenfield, Mar 11 2022: (Start) The table below lists the first 15 pairs of integers (b,c) such that b > c+1 and b^3 + c^3 is a centered cube number k^3 + (k+1)^3 = d. Note that there are two pairs (b,c) for k=121 and two for k=163. For these and for all numbers k for which there is more than one pair (b,c), the pair with the smallest value of b is chosen as the one whose values (b,c) appear in A352135 and A352136, i.e., A352135(n) and A352136(n) are the values (b,c) in that pair whose value of b is smallest. Thus, the 15 solutions listed in the table account for only the first 13 terms of this sequence and of A352133, A352135, and A352136. . n a(n)=k d(n) b(n) c(n) -- ------ ------- ---- ---- 1 3 91 6 -5 2 4 189 6 -3 3 9 1729 12 1 4 18 12691 28 -21 5 32 68705 41 -6 6 36 97309 46 -3 7 46 201159 151 -148 8 58 400491 90 -69 9 107 2484755 171 -136 10 108 2554741 181 -150 11 121 3587409 153 18 (153 < 369) * 121 3587409 369 -360 ((b,c) omitted from A352135,A352136) 12 123 3767491 160 -69 13 163 8741691 206 -5 (206 < 254) * 163 8741691 254 -197 ((b,c) omitted from A352135,A352136) (End) PROG (Magma) a:=[]; for k in [1..5700] do t:=k^3+(k+1)^3; for s in Divisors(t) do if s gt 2*k then break; end if; if IsSquare(12*(t div s) - 3*s^2) then a[#a+1]:=k; break; end if; end for; end for; a; // Jon E. Schoenfield, Mar 09 2022 CROSSREFS Cf. A005898, A001235, A272885, A352133, A352135, A352136, A352220, A352221, A352222, A352223, A352224, A352225. Sequence in context: A003611 A192115 A103295 * A304257 A217492 A178784 Adjacent sequences: A352131 A352132 A352133 * A352135 A352136 A352137 KEYWORD nonn,more AUTHOR Vladimir Pletser, Mar 05 2022 EXTENSIONS Missing terms inserted by Jon E. Schoenfield, Mar 09 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 03:13 EST 2023. Contains 359836 sequences. (Running on oeis4.)