OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-3)^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * 3^(k-1) * a(n-k).
a(n) ~ n! * 3^(n+1) * exp(3*n) / (exp(3) - 1)^(n+1). - Vaclav Kotesovec, Mar 03 2022
MATHEMATICA
nmax = 19; CoefficientList[Series[1/(1 + Log[1 - 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
PROG
(PARI) my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-3*x)/3))) \\ Michel Marcus, Mar 02 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 02 2022
STATUS
approved