login
A352002
a(n) = prime(n)# + prime(n), where prime(n)# is the n-th primorial number A002110(n).
0
4, 9, 35, 217, 2321, 30043, 510527, 9699709, 223092893, 6469693259, 200560490161, 7420738134847, 304250263527251, 13082761331670073, 614889782588491457, 32589158477190044783, 1922760350154212639129, 117288381359406970983331, 7858321551080267055879157, 557940830126698960967415461
OFFSET
1,1
FORMULA
a(n) = A002110(n) + A000040(n). Also a(n) = prime(n) * (prime(n-1)# + 1).
EXAMPLE
a(3) = prime(3)# + prime(3) = 2 * 3 * 5 + 5 = 35.
PROG
(PARI) a(n) = prime(n) + prod(k=1, n, prime(k)); \\ Michel Marcus, Feb 28 2022
(Python)
from sympy import primorial, prime
def a(n): return primorial(n) + prime(n)
for n in range(1, 50):
print(a(n), end=", ") # Javier Rivera Romeu, Mar 01 2022
CROSSREFS
Sequence in context: A176607 A134815 A367992 * A120073 A056894 A272145
KEYWORD
nonn
AUTHOR
Ryan Bresler, Feb 27 2022
STATUS
approved