login
A351884
Irregular triangle read by rows: T(n,k) is the number of sets of lists with distinct block sizes (as in A088311(n)) and containing exactly k lists.
1
1, 0, 1, 0, 2, 0, 6, 6, 0, 24, 24, 0, 120, 240, 0, 720, 1440, 720, 0, 5040, 15120, 5040, 0, 40320, 120960, 80640, 0, 362880, 1451520, 1088640, 0, 3628800, 14515200, 14515200, 3628800, 0, 39916800, 199584000, 199584000, 39916800, 0, 479001600, 2395008000, 3353011200, 958003200
OFFSET
0,5
FORMULA
E.g.f.: Product_{i>=1} (1 + y*x^i).
Sum_{k=0..A003056(n)} (-1)^k * T(n,k) = A293140(n). - Alois P. Heinz, Feb 23 2022
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 2;
0, 6, 6;
0, 24, 24;
0, 120, 240;
0, 720, 1440, 720;
0, 5040, 15120, 5040;
0, 40320, 120960, 80640;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+expand(x*b(n-i, min(i-1, n-i)))*n!/(n-i)!))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Feb 23 2022
MATHEMATICA
nn = 13; Prepend[Map[Prepend[#, 0] &, Drop[Map[Select[#, # > 0 &] &, Range[0, nn]! CoefficientList[Series[Product[1 + y x^i, {i, 1, nn}], {x, 0, nn}], {x, y}]], 1]], {1}] // Grid
CROSSREFS
Columns k=0-1 give: A000007, A000142 (for n>=1).
Cf. A088311 (row sums).
T(A000217(n),n) gives A052295.
Sequence in context: A338465 A142354 A105110 * A342501 A064696 A021488
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 23 2022
STATUS
approved