login
A351881
Expansion of e.g.f. 1 / (1 - x)^cosh(x).
2
1, 1, 2, 9, 42, 235, 1605, 12446, 108836, 1061565, 11402565, 133806134, 1703059974, 23366177055, 343788954691, 5399655967642, 90173526680152, 1595513146457993, 29817130502252169, 586883850601630054, 12135450890055396810, 263012688923611212107, 5962155058714267567319
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |A009416(k)| * a(n-k).
a(n) ~ n! * n^(cosh(1)-1) / Gamma(cosh(1)). - Vaclav Kotesovec, Feb 23 2022
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(1 - x)^Cosh[x], {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(1/(1-x)^cosh(x))) \\ Michel Marcus, Feb 23 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 23 2022
STATUS
approved