login
A351867
Heptagonal numbers (or 7-gonal numbers) which are products of four distinct primes.
0
3010, 4774, 10465, 14326, 20566, 28462, 54538, 59059, 59830, 66178, 66994, 87142, 104755, 112042, 120670, 121771, 131905, 137710, 138886, 168610, 179158, 201214, 212722, 223054, 249166, 273406, 288490, 290191, 314530, 343546, 358534, 375778, 401401, 405418, 419635, 461605
OFFSET
1,1
COMMENTS
A squarefree subsequence of heptagonal numbers.
EXAMPLE
3010 = 2*5*7*43 = 35(5*35-3)/2.
4774 = 2*7*11*31 = 44(5*44-3)/2.
10465 = 5*7*13*23 = 65(5*65-3)/2.
14326 = 2*13*19*29 = 76(5*76-3)/2.
PROG
(Python)
from itertools import count, islice
from sympy import factorint
def A351867_gen(): return filter(lambda k:sum((f := factorint(k)).values()) == 4 == len(f), (n*(5*n-3)//2 for n in count(1)))
A351867_list = list(islice(A351867_gen(), 20)) # Chai Wah Wu, Apr 14 2022
CROSSREFS
Sequence in context: A279584 A004228 A004229 * A004230 A162606 A233963
KEYWORD
nonn
AUTHOR
Massimo Kofler, Apr 12 2022
STATUS
approved