login
A351839
Triangle read by rows: T(n, k) = A027375(n)*Sum_{m=1..floor(n/k)} binomial(n, k*m).
1
2, 6, 2, 14, 6, 6, 30, 14, 24, 12, 62, 30, 60, 60, 30, 126, 62, 126, 180, 180, 54, 254, 126, 252, 420, 630, 378, 126, 510, 254, 504, 852, 1680, 1512, 1008, 240, 1022, 510, 1014, 1620, 3780, 4536, 4536, 2160, 504, 2046, 1022, 2040, 3060, 7590, 11340, 15120, 10800, 5040, 990
OFFSET
1,1
COMMENTS
T(n, k) is the number of k-th roots of unity as eigenvalues of the quantum operator O for a free Motzkin spin chain of length n. For k = 1, it gives the correct result if one excludes the eigenvalue 2.
For the definitions of both a free Motzkin spin chain and the quantum operator O, see Hao et al.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Kun Hao, Olof Salberger, and Vladimir Korepin, Can a spin chain relate combinatorics to number theory?, arXiv:2202.07647 [quant-ph], 2022. See pp. 9-10.
EXAMPLE
Triangle begins:
2;
6, 2;
14, 6, 6;
30, 14, 24, 12;
62, 30, 60, 60, 30;
126, 62, 126, 180, 180, 54;
254, 126, 252, 420, 630, 378, 126;
...
MATHEMATICA
g[n_]:= DivisorSum[n, (2^#)*MoebiusMu[n/#]&]; binomSum[n_, k_]:=Sum[Binomial[n, i], {i, k, n, k}]; T[n_, k_]:=g[k]*binomSum[n, k]; (* See p. 9 in Hao et al. *)
Flatten[Table[T[n, k], {n, 10}, {k, n}]]
PROG
(PARI) T(n, k) = sumdiv(k, d, moebius(d)*2^(k/d))*sum(m=1, n\k, binomial(n, k*m)) \\ Andrew Howroyd, Feb 21 2022
CROSSREFS
Cf. A000918 (k = 2), A007318, A024023 (row sums), A027375 (leading diagonal), A095121 (k = 1).
Sequence in context: A189218 A122663 A100892 * A324189 A319543 A126287
KEYWORD
nonn,tabl,look
AUTHOR
Stefano Spezia, Feb 21 2022
STATUS
approved