login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262).
1

%I #21 Mar 20 2023 08:56:14

%S 0,0,2,6,36,260,2190,21042,226856,2709576,35491770,505620830,

%T 7780224012,128555409996,2269569526406,42625044254730,848404205856720,

%U 17836074466842512,394872870912995826,9181542826326252726,223680717959853460340,5697036951307194432660,151396442683371572351742

%N Total number of size 2 lists in all sets of lists partitioning [n] (cf. A000262).

%F a(n) = 2*binomial(n,2)*A000262(n-2).

%F E.g.f.: x^2*exp(x/(1-x)) = d/dy G(x,y)|y=1 where G(x,y) is the e.g.f. for A351823.

%F a(n) = Sum_{k=0..floor(n/2)} k * A351823(n,k).

%F a(n) ~ n^(n - 1/4) * exp(2*sqrt(n) - n - 1/2) / sqrt(2) * (1 - 101/(48*sqrt(n))). - _Vaclav Kotesovec_, Feb 21 2022

%F a(n) = 2 * A129652(n,2). - _Alois P. Heinz_, Feb 22 2022

%F Recurrence: (n-2)*a(n) = n*(2*n-5)*a(n-1) - (n-4)*(n-1)*n*a(n-2). - _Vaclav Kotesovec_, Mar 20 2023

%t nn = 22; Range[0, nn]! CoefficientList[Series[D[Exp[ x/(1 - x) - x ^2 + y x^2], y] /. y -> 1, {x, 0, nn}], x]

%t Join[{0, 0, 2}, Table[n!*Hypergeometric1F1[n-1, 2, 1]/E, {n, 3, 25}]] (* _Vaclav Kotesovec_, Feb 21 2022 *)

%Y Cf. A000262, A006152, A129652, A351823.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Feb 20 2022