Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jan 20 2023 01:31:32
%S 1,1,1,2,7,6,49,12,12,301,140,60,2281,1470,180,120,21211,12642,2940,
%T 840,220417,127736,41160,3360,1680,2528569,1527192,455112,70560,15120,
%U 32014801,19837530,5748120,1234800,75600,30240,442974511,278142590,83995560,16687440,1940400,332640
%N Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).
%C From the asymptotic estimate of A000262(n) provided by _Vaclav Kotesovec_ we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.
%F E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
%F Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - _Alois P. Heinz_, Feb 24 2022
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1, 2;
%e 7, 6;
%e 49, 12, 12;
%e 301, 140, 60;
%e 2281, 1470, 180, 120;
%e 21211, 12642, 2940, 840;
%e ...
%p b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
%p `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
%p seq(T(n), n=0..12); # _Alois P. Heinz_, Feb 20 2022
%t nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid
%Y Column k=1 gives A113235.
%Y T(n,floor(n/2)) gives A081125.
%Y T(2n,n) gives A001813.
%Y Cf. A000262 (row sums) A006152, A114329, A351825.
%K nonn,tabf
%O 0,4
%A _Geoffrey Critzer_, Feb 20 2022