login
A351739
Expansion of e.g.f. 1/(1 + log(1-x))^x.
3
1, 0, 2, 6, 40, 295, 2688, 28588, 348864, 4802922, 73652110, 1245046836, 23003289912, 461188427544, 9972307487660, 231341792369010, 5731422576446208, 151032969213699536, 4218265874407103640, 124471244064061267032, 3869361472890037713560
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A052809(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n! * exp(n) / (Gamma(1 - 1/exp(1)) * n^(1/exp(1)) * (exp(1) - 1)^(n + 1 - 1/exp(1))). - Vaclav Kotesovec, Jun 04 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^x))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 20 2022
STATUS
approved