login
A351620
a(1) = 1; a(n) = a(n-1) + Sum_{k=2..n} a(floor(n/k)).
1
1, 2, 4, 8, 13, 22, 32, 48, 67, 93, 120, 164, 209, 266, 331, 418, 506, 626, 747, 905, 1076, 1276, 1477, 1755, 2039, 2370, 2723, 3149, 3576, 4112, 4649, 5295, 5971, 6737, 7519, 8501, 9484, 10590, 11744, 13109, 14475, 16092, 17710, 19561, 21504, 23650, 25797, 28386, 30986, 33903
OFFSET
1,2
COMMENTS
Partial sums of A320225.
FORMULA
G.f. A(x) satisfies: A(x) = x/(1 - x) + (1/(1 - x)^2) * Sum_{k>=2} (1 - x^k) * A(x^k).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 1, 50}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 20 2022
STATUS
approved