login
A351599
a(n) is the smallest integer m > 0 such that m*n is a digitally balanced number (A031443).
2
2, 1, 3, 3, 2, 2, 5, 7, 1, 1, 4, 1, 4, 3, 9, 15, 9, 10, 2, 9, 2, 2, 8, 9, 2, 2, 5, 2, 8, 5, 17, 31, 5, 5, 1, 5, 1, 1, 4, 6, 1, 1, 4, 1, 3, 4, 3, 5, 1, 1, 3, 1, 4, 4, 3, 1, 4, 4, 3, 3, 13, 9, 33, 63, 3, 3, 3, 3, 10, 3, 2, 3, 11, 9, 2, 3, 2, 2, 8, 3, 10, 9, 2
OFFSET
1,1
FORMULA
a(n) = A143146(n) / n. - Rémy Sigrist, Jul 11 2022
MATHEMATICA
balQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ@(m = Length@d) && Count[d, 1] == m/2]; a[n_] := Module[{k = 1}, While[!balQ[k*n], k++]; k]; Array[a, 100] (* Amiram Eldar, May 02 2022 *)
PROG
(PARI) is(n) = hammingweight(n)==hammingweight(bitneg(n, #binary(n))); \\ A031443
a(n) = my(m=1); while (!is(m*n), m++); m; \\ Michel Marcus, May 02 2022
CROSSREFS
Sequence in context: A046819 A159945 A089216 * A350743 A234200 A102746
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, May 02 2022
STATUS
approved