%I #33 Jul 09 2022 18:31:27
%S 0,60,108,336,1232,11088,114240,261888,320320,418880,2790720,2882880,
%T 3769920,6499584,9801792,16930368,19171152,35672000,47736000,51068160,
%U 98654400,110046720,172540368,229909120,403504640,487788480,738152448,755415680,886792320,1960686000,2070484416,2339064000,2889432000
%N a(n) = A349745(n) divided by 2 if it is even, and 0 if A349745(n) is odd.
%C Questions: Are all nonzero terms abundant (in A005101)? Are all terms even? Could either be proved? See also comments in A351538 and in A351549.
%H Antti Karttunen, <a href="/A351548/b351548.txt">Table of n, a(n) for n = 1..52</a> (prepared from the b-file of A349745 computed by _Amiram Eldar_)
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = 0 if A349745(n) is odd, a(n) = A349745(n)/2 otherwise.
%o (PARI) A351548(n) = { my(u=A349745(n)); if(u%2,0,u/2); };
%Y Cf. A005101, A326051 (all six known terms are present here), A329963, A349169, A349745, A351458, A351459, A351538.
%Y Cf. also A351549.
%K nonn
%O 1,2
%A _Antti Karttunen_, Feb 18 2022