login
A351502
Expansion of e.g.f. 1/(1 + log(1 - x)*exp(-x)).
1
1, 1, 1, 2, 10, 59, 373, 2736, 23504, 229029, 2477219, 29473344, 383104588, 5401356583, 82069677701, 1336740758544, 23234632127072, 429259519490985, 8399672396793063, 173538299521211128, 3774815414843398588, 86230662745426403771, 2063931187442813081881
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A002741(k) * binomial(n,k) * a(n-k).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[1/(1+Log[1-x]Exp[-x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 03 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)*exp(-x))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 04 2022
STATUS
approved