login
A351492
Expansion of e.g.f. (1 - x)^(-x^2/2).
8
1, 0, 0, 3, 6, 20, 180, 1134, 7980, 71280, 685440, 7165620, 82720440, 1036404720, 13990472496, 202812132600, 3141926096400, 51795939162240, 905465629762560, 16731527824735920, 325859956191352800, 6671593966263992640, 143254214818174152000
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = ((n-1)!/2) * Sum_{k=3..n} k/(k-2) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
a(n) ~ sqrt(2) * n^n / exp(n). - Vaclav Kotesovec, May 04 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^2/2)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^2/2*log(1-x))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/2*sum(j=3, i, j/(j-2)*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2022
STATUS
approved