The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A351274 a(n) = Sum_{k=0..n} (2*k)^k * Stirling1(n,k). 3
 1, 2, 14, 172, 2964, 65848, 1789688, 57521280, 2133964352, 89744964288, 4219022123328, 219246630903936, 12479659844383104, 772174659456713472, 51603153976362554112, 3704166182571098222592, 284239227254465994240000, 23218955083323248158556160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Lambert W-Function. FORMULA E.g.f.: 1/(1 + LambertW( -2 * log(1+x) )), where LambertW() is the Lambert W-function. a(n) ~ n^n / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n+1/2) * exp(n - exp(-1)/4 + 1/2)). - Vaclav Kotesovec, Feb 06 2022 PROG (PARI) a(n) = sum(k=0, n, (2*k)^k*stirling(n, k, 1)); (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-2*log(1+x))))) CROSSREFS Cf. A305819, A351182, A351275, A351276. Sequence in context: A141012 A351277 A235369 * A228476 A308449 A233224 Adjacent sequences: A351271 A351272 A351273 * A351275 A351276 A351277 KEYWORD nonn AUTHOR Seiichi Manyama, Feb 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 21:49 EST 2023. Contains 359849 sequences. (Running on oeis4.)