|
|
A351274
|
|
a(n) = Sum_{k=0..n} (2*k)^k * Stirling1(n,k).
|
|
3
|
|
|
1, 2, 14, 172, 2964, 65848, 1789688, 57521280, 2133964352, 89744964288, 4219022123328, 219246630903936, 12479659844383104, 772174659456713472, 51603153976362554112, 3704166182571098222592, 284239227254465994240000, 23218955083323248158556160
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..17.
Eric Weisstein's World of Mathematics, Lambert W-Function.
|
|
FORMULA
|
E.g.f.: 1/(1 + LambertW( -2 * log(1+x) )), where LambertW() is the Lambert W-function.
a(n) ~ n^n / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n+1/2) * exp(n - exp(-1)/4 + 1/2)). - Vaclav Kotesovec, Feb 06 2022
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, (2*k)^k*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-2*log(1+x)))))
|
|
CROSSREFS
|
Cf. A305819, A351182, A351275, A351276.
Sequence in context: A141012 A351277 A235369 * A228476 A308449 A233224
Adjacent sequences: A351271 A351272 A351273 * A351275 A351276 A351277
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Seiichi Manyama, Feb 05 2022
|
|
STATUS
|
approved
|
|
|
|