OFFSET
1,2
COMMENTS
For a random map, f:N->N, |N|=n, the probability of having a preimage of cardinality greater than n/2 is
a(n)/A000312(n) = n*Sum_{k=0..floor((n-1)/2)} binomial(n,k)*(1-1/n)^k*(1/n)^(n-k).
The number of maps g:V->C, |V|=v, |C|=c such that there exists x in C, |g^-1(x)| > v/2, is
b(c,v) = c * Sum_{k=0..floor((v-1)/2)} binomial(v,k)*(c-1)^k;
b(n,n) = a(n), b(2,n) = A202736(n), b(c,1) = b(c,2) = c.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..592
FORMULA
a(n) = n * Sum_{k=0..floor((n-1)/2)} binomial(n,k)*(n-1)^k.
MATHEMATICA
a[1] = 1; a[n_] := n * Sum[(n - 1)^k*Binomial[n, k], {k, 0, Floor[(n - 1)/2]}]; Array[a, 20] (* Amiram Eldar, Feb 01 2022 *)
PROG
(PARI) a(n) = n*sum(k=0, floor((n-1)/2), binomial(n, k)*(n-1)^k)
CROSSREFS
KEYWORD
nonn
AUTHOR
Aaron O. Schweiger, Jan 31 2022
STATUS
approved