login
A351099
Composite numbers k such that the maximal digit value in primorial base expansion of the arithmetic derivative of k is not larger than the maximal exponent in the prime factorization of k.
2
4, 8, 9, 10, 12, 14, 15, 16, 24, 25, 28, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 58, 62, 64, 68, 74, 81, 87, 96, 98, 99, 108, 112, 120, 125, 128, 136, 155, 156, 160, 161, 162, 184, 189, 192, 196, 198, 203, 204, 208, 209, 210, 212, 217, 220, 221, 224, 225, 236, 244, 246, 247, 250, 252, 256, 268, 270, 272, 280, 282, 288
OFFSET
1,1
COMMENTS
Composite k such that A328390(k) <= A051903(k).
Composite k for which A051903(A327859(n)) <= A051903(k).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A328114(n) = { my(s=0, p=2); while(n, s = max(s, (n%p)); n = n\p; p = nextprime(1+p)); (s); };
isA351099(n) = (n>1&&!isprime(n)&&(A328114(A003415(n)) <= A051903(n)));
CROSSREFS
Sequence in context: A189207 A127162 A096529 * A193166 A155101 A158582
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 03 2022
STATUS
approved