login
A351073
Maximal exponent in the prime factorization of A276156(n).
6
0, 1, 1, 1, 1, 3, 2, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 5, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4, 3, 1, 1, 2, 1, 2, 5, 2, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 5, 1, 1, 1, 2, 1, 3, 2, 1, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1
OFFSET
1,6
COMMENTS
See also comments in A143293.
FORMULA
a(n) = A051903(A276156(n)).
For n >= 1, a(2^n) = 1.
EXAMPLE
For n = 1040 = 2^10 + 2^4, A276156(n) = A002110(10) + A002110(4) = 6469693440 = 2^12 * 3 * 5 * 7^3 * 307. The largest exponent is 12, therefore a(1040) = 12.
MATHEMATICA
{0}~Join~Array[Max[FactorInteger[#][[All, -1]]] &@ Total[Times @@@ Transpose@{Map[Times @@ # &, Prime@ Range@ Range[0, Length@ # - 1]], Reverse@ #}] &@ IntegerDigits[#, 2] &, 104, 2] (* Michael De Vlieger, Feb 04 2022 *)
PROG
(PARI)
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A276156(n) = { my(s=0, p=1, r=1); while(n, if(n%2, s += r); n>>=1; p = nextprime(1+p); r *= p); (s); };
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Antti Karttunen, Feb 03 2022
STATUS
approved