login
A351022
Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
8
1, 2, 13, 289, 13814, 1795898, 265709592, 70163924440, 20610999526800, 9097511018219760, 6845834489829830144
OFFSET
0,2
EXAMPLE
a(3) = 289:
3 5 2
5 3 5
2 5 3
a(4) = 13814:
5 7 3 2
7 5 7 3
3 7 5 7
2 3 7 5
a(5) = 1795898:
5 11 7 3 2
11 5 11 7 3
7 11 5 11 7
3 7 11 5 11
2 3 7 11 5
PROG
(Python)
from itertools import permutations
from sympy import Matrix, prime
def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1, n+1))) # Chai Wah Wu, Jan 31 2022
CROSSREFS
Cf. A350940, A350956, A351021 (minimal).
Sequence in context: A123113 A126742 A013051 * A012955 A357342 A011808
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jan 29 2022
EXTENSIONS
a(9) and a(10) from Lucas A. Brown, Sep 04 2022
STATUS
approved