%I #10 Jun 12 2022 11:22:56
%S 1,17,386,8857,203321,4667522,107149681,2459775137,56467678466,
%T 1296296829577,29758359401801,683145969411842,15682598937070561,
%U 360016629583211057,8264699881476783746,189728080644382815097,4355481154939327963481,99986338482960160344962,2295330303953144359970641
%N a(0) = 1, a(1) = 17, and a(n) = 23*a(n-1) - a(n-2) - 4 for n >= 2.
%C One of 10 linear second-order recurrence sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4 and together forming A350916.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (24,-24,1).
%F G.f.: (1 - 7*x + 2*x^2)/((1 - x)*(1 - 23*x + x^2)). - _Stefano Spezia_, Jan 22 2022
%F 21*a(n) = 4+17*A097778(n)-38*A097778(n-1). - _R. J. Mathar_, Feb 07 2022
%t LinearRecurrence[{24,-24,1},{1,17,386},20] (* _Harvey P. Dale_, Jun 12 2022 *)
%Y Cf. A350916.
%Y Other sequences satisfying (a(n)*a(n-1)-1) * (a(n)*a(n+1)-1) = (a(n)+1)^4: A103974, A350917, A350919, A350920, A350921, A350922, A350923, A350925, A350925.
%K nonn,easy
%O 0,2
%A _Max Alekseyev_, Jan 22 2022