login
Triangle read by rows: T(n,k) is the number of oriented graphs on n unlabeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.
4

%I #8 Jan 29 2022 22:31:00

%S 1,1,1,1,1,1,3,2,1,1,4,10,12,10,4,1,1,4,13,41,78,131,144,107,50,12,1,

%T 1,4,14,55,187,539,1292,2500,3817,4512,4112,2740,1274,376,56,1,1,4,14,

%U 58,240,1009,3643,11815,32538,76145,149724,247329,340364,387834,361450,271177,159872,71320,22690,4604,456

%N Triangle read by rows: T(n,k) is the number of oriented graphs on n unlabeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

%H Andrew Howroyd, <a href="/A350733/b350733.txt">Table of n, a(n) for n = 0..1350</a> (rows 0..20)

%e Triangle begins:

%e [0] 1;

%e [1] 1;

%e [2] 1, 1;

%e [3] 1, 1, 3, 2;

%e [4] 1, 1, 4, 10, 12, 10, 4;

%e [5] 1, 1, 4, 13, 41, 78, 131, 144, 107, 50, 12;

%e ...

%o (PARI)

%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}

%o edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}

%o row(n)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); Vecrev(s/n!)}

%o { for(n=0, 6, print(row(n))) }

%Y Row sums are A001174.

%Y Cf. A350734.

%K nonn,tabf

%O 0,7

%A _Andrew Howroyd_, Jan 13 2022