login
A350720
a(n) = Sum_{k=0..n} k! * 3^k * k^n * Stirling1(n,k).
3
1, 3, 69, 3948, 422082, 72567522, 18304992558, 6367730357160, 2921446409138136, 1709074810258369776, 1241694104839498851552, 1096850187800368469477424, 1157691464039682741551221152, 1438880771284303822650674399664
OFFSET
0,2
LINKS
FORMULA
E.g.f.: Sum_{k>=0} (3 * log(1 + k*x))^k.
MATHEMATICA
a[0] = 1; a[n_] := Sum[k! * 3^k * k^n * StirlingS1[n, k], {k, 1, n}]; Array[a, 14, 0] (* Amiram Eldar, Feb 03 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*3^k*k^n*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (3*log(1+k*x))^k)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 03 2022
STATUS
approved