login
a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.
9

%I #21 Feb 16 2025 08:34:02

%S 37,142,285,536,911,1268,1909,2713,3876,5179,6891,8901,11190,14384,

%T 18087,21697,27055,32166,39111,46560,53892,64412,73949,86778,98202,

%U 113635,130088,148051,167505,190968,214955,240143,269775,297615,331201,367429,409179,451340,497830

%N a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.

%H David A. Corneth, <a href="/A350405/b350405.txt">Table of n, a(n) for n = 3..102</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygonalNumber.html">Polygonal Number</a>

%F a(n) >= A006484(n). - _David A. Corneth_, Dec 30 2021

%e For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.

%t Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* _Giorgos Kalogeropoulos_, Dec 30 2021 *)

%Y Cf. A006484, A025443, A057145, A307598, A350207, A350241, A350288.

%K nonn,changed

%O 3,1

%A _Ilya Gutkovskiy_, Dec 29 2021

%E a(10)-a(31) from _Michael S. Branicky_, Dec 29 2021

%E More terms from _David A. Corneth_, Dec 30 2021