login
A350355
Numbers k such that the k-th composition in standard order is up/down.
6
0, 1, 2, 4, 6, 8, 12, 13, 16, 20, 24, 25, 32, 40, 41, 48, 49, 50, 54, 64, 72, 80, 81, 82, 96, 97, 98, 102, 108, 109, 128, 144, 145, 160, 161, 162, 166, 192, 193, 194, 196, 198, 204, 205, 216, 217, 256, 272, 288, 289, 290, 320, 321, 322, 324, 326, 332, 333, 384
OFFSET
1,3
COMMENTS
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A composition is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2).
FORMULA
EXAMPLE
The terms together with the corresponding compositions begin:
0: ()
1: (1)
2: (2)
4: (3)
6: (1,2)
8: (4)
12: (1,3)
13: (1,2,1)
16: (5)
20: (2,3)
24: (1,4)
25: (1,3,1)
32: (6)
40: (2,4)
41: (2,3,1)
48: (1,5)
49: (1,4,1)
50: (1,3,2)
54: (1,2,1,2)
MATHEMATICA
updoQ[y_]:=And@@Table[If[EvenQ[m], y[[m]]>y[[m+1]], y[[m]]<y[[m+1]]], {m, 1, Length[y]-1}];
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
Select[Range[0, 100], updoQ[stc[#]]&]
CROSSREFS
The case of permutations is counted by A000111.
These compositions are counted by A025048, down/up A025049.
The strict case is counted by A129838, undirected A349054.
The weak version is counted by A129852, down/up A129853.
The version for anti-runs is A333489, a superset, complement A348612.
This is the up/down case of A345167, counted by A025047.
Counting patterns of this type gives A350354.
The down/up version is A350356.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions, unordered A000041.
A345192 counts non-alternating compositions, ranked by A345168.
A349052 counts weakly alternating compositions, complement A349053.
A349057 ranks non-weakly alternating compositions.
Statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Patterns are A333217.
Sequence in context: A274262 A092990 A323505 * A172311 A103829 A164530
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2022
STATUS
approved