login
A350294
a(n) = floor(n*2^n/(n + 1)).
2
0, 1, 2, 6, 12, 26, 54, 112, 227, 460, 930, 1877, 3780, 7606, 15291, 30720, 61680, 123790, 248346, 498073, 998643, 2001826, 4011942, 8039082, 16106127, 32263876, 64623350, 129424237, 259179060, 518975214, 1039104990, 2080374784, 4164816771, 8337289456, 16689015778
OFFSET
0,3
LINKS
Heiko Harborth and Hauke Nienborg, Saturated vertex Turán numbers for cube graphs, Congr. Num. 208 (2011), 183-188.
Mathonline, Cube Graphs
FORMULA
A350293(n) <= a(n) (see Lemma 1 in Harborth and Nienborg).
a(n) ~ 2^n.
MAPLE
f:= n -> floor(n*2^n/(n+1)):
map(f, [$0..40]); # Robert Israel, Dec 27 2021
MATHEMATICA
Table[Floor[n 2^n/(n+1)], {n, 0, 34}]
CROSSREFS
Sequence in context: A084170 A245264 A327477 * A052971 A364423 A289443
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 23 2021
STATUS
approved