login
A350258
Triangle read by rows. T(n, k) = k! * BellPolynomial(n, k).
6
1, 0, 1, 0, 2, 12, 0, 5, 44, 342, 0, 15, 188, 1854, 18144, 0, 52, 908, 11196, 130272, 1545600, 0, 203, 4860, 74106, 1016544, 13818600, 193030560, 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
OFFSET
0,5
EXAMPLE
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 2, 12
[3] 0, 5, 44, 342
[4] 0, 15, 188, 1854, 18144
[5] 0, 52, 908, 11196, 130272, 1545600
[6] 0, 203, 4860, 74106, 1016544, 13818600, 193030560
[7] 0, 877, 28428, 531378, 8535264, 132204600, 2065854240, 33232948560
MAPLE
A350258 := (n, k) -> ifelse(n = 0, 1, k! * BellB(n, k)):
seq(seq(A350258(n, k), k = 0..n), n = 0..7);
MATHEMATICA
T[n_, k_] := k! BellB[n, k]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 22 2021
STATUS
approved