login
A350256
Triangle read by rows. T(n, k) = BellPolynomial(n, k).
7
1, 0, 1, 0, 2, 6, 0, 5, 22, 57, 0, 15, 94, 309, 756, 0, 52, 454, 1866, 5428, 12880, 0, 203, 2430, 12351, 42356, 115155, 268098, 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839, 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
OFFSET
0,5
EXAMPLE
Triangle begins:
[0] 1
[1] 0, 1
[2] 0, 2, 6
[3] 0, 5, 22, 57
[4] 0, 15, 94, 309, 756
[5] 0, 52, 454, 1866, 5428, 12880
[6] 0, 203, 2430, 12351, 42356, 115155, 268098
[7] 0, 877, 14214, 88563, 355636, 1101705, 2869242, 6593839
[8] 0, 4140, 89918, 681870, 3188340, 11202680, 32510850, 82187658, 187104200
MAPLE
A350256 := (n, k) -> ifelse(n = 0, 1, BellB(n, k)):
seq(seq(A350256(n, k), k = 0..n), n = 0..8);
MATHEMATICA
T[n_, k_] := BellB[n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A242817 (main diagonal), A000110 (column 1), A350264 (row sums), A350263 (Bell(n,-k)), A189233 and A292860 (array).
Sequence in context: A377764 A336082 A327280 * A345208 A241810 A156991
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 22 2021
STATUS
approved