login
A350200
Array read by antidiagonals: T(n,k) is the determinant of the Hankel matrix of the 2*n-1 consecutive primes starting at the k-th prime, n >= 0, k >= 1.
2
1, 1, 2, 1, 3, 1, 1, 5, -4, -2, 1, 7, 6, 12, 0, 1, 11, -30, -72, 144, 288, 1, 13, 18, 72, 0, 576, -1728, 1, 17, -42, -72, 288, 1152, -7104, -26240, 1, 19, 30, -96, 144, -1248, -11712, 45248, 222272, 1, 23, 22, -188, 488, -112, -11360, 21184, 450432, 1636864
OFFSET
0,3
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------
0 | 1 1 1 1 1 1 1 1
1 | 2 3 5 7 11 13 17 19
2 | 1 -4 6 -30 18 -42 30 22
3 | -2 12 -72 72 -72 -96 -188 -480
4 | 0 144 0 288 144 488 1800 2280
5 | 288 576 1152 -1248 -112 4432 -1552 15952
6 | -1728 -7104 -11712 -11360 -10816 29952 -89152 -57088
7 | -26240 45248 21184 -103168 -43264 -605440 -379264 271552
8 | 222272 450432 1068800 2022912 3927552 5399552 6315904 6861312
T(3,2) = 12, the determinant of the Hankel matrix
[3 5 7]
[5 7 11]
[7 11 13].
PROG
(Python)
from sympy import Matrix, prime, nextprime
def A350200(n, k):
p = [prime(k)] if n > 0 else []
for i in range(2*n-2): p.append(nextprime(p[-1]))
return Matrix(n, n, lambda i, j:p[i+j]).det()
CROSSREFS
Cf. A350201.
Cf. A000012 (row n = 0), A000040 (row n = 1), A056221 (row n = 2 with opposite sign), A024356 (column k = 1), A071543 (column k = 2).
Sequence in context: A110619 A354234 A191861 * A129761 A319299 A207031
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Offset corrected by Pontus von Brömssen, Aug 25 2022
STATUS
approved